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ABSTRACT: This paper describes the MCQNLO method for matching next-to-leading order
(NLO) perturbative QCD with the parton shower and hadronization model of the Monte
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and colour assignments are presented. We obtain predictions for various distributions which
are compared with experimental data.
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1. Introduction

Herwig++ [[f] is a general purpose Monte Carlo event generator used for simulating hard
lepton-lepton, lepton-hadron and hadron-hadron collisions. It uses the parton shower ap-
proach for initial and final state parton branching processes including colour coherence
effects and azimuthal correlations. One example of a process modelled by Herwig++ is
eTe™ annihilation to ¢g to form two jets (figure []). The jet topology (the number of jets)
is determined by the hard cross-section of the process whilst the jet structure is determined
by Herwig++ by simulating soft and collinear branching from the primary partons and the
conversion of the partonic final states into hadrons (hadronization).

Another process modelled by Herwig++ is Drell-Yan lepton pair production from
hadron-hadron collisions which is illustrated at leading order in figure f.

Different methods of matching next-to-leading order calculations to parton shower
generators have been proposed and implemented [l]-f, f—[[J]. The aim of this paper is to
extend the parton shower simulation to next-to-leading order using the MC@QNLO method
to include the formation of an extra jet and NLO virtual corrections without any double
counting of events. This is illustrated for e™e™ annihilation in figure f.  For Drell-Yan
lepton pair production, there are 2 real emission contributions at next-to-leading order.
They are the emission of a gluon, ¢ + § — V 4 ¢ and the QCD Compton subprocess,
¢+ g — V + q. Both are illustrated in figure .

The generic MC@QNLO method is described in [[4] and has previously been success-
fully applied to the hadroproduction of gauge boson pairs [[4, [§], heavy quark-antiquark
pairs [[q] and single-top production [[7q]. In these applications, the Fortran Monte Carlo
event generator HERWIG [[I§] was used to simulate the parton shower and hadronization.
In this paper however, the MC@NLO method is applied to the eTe™ annihilation and
Drell-Yan processes using Herwig++, a redeveloped version which implements new shower
variables and an improved hadronization model [[[].
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Figure 2: LO diagram for Drell-Yan lepton pair production.

Figure 3: 3 jet formation

. ete~ annihilation

In the massless limit, the 3-particle cross-section for the process, et e™ — v* — qgg shown
in figure [f is given by (neglecting Z boson exchange contributions for the moment)

o1 = Uo/ququg—;CFM(xq,mq) (2.1)

xg —i—x%
(I —2g)(1 =)’

M(zq,q) =



Figure 4: NLO diagrams for lepton pair production.
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Figure 5: Feynman diagrams for et e™ — ¢qg

2E,
w=
28,
"=
Ara?
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Cr = 4/3 (for the case of SU(3)colour representations), and the integration region is:
0<zg25<1l,zg4+25>1 BJ].

The integrand in (R.1)) is divergent at xq,g = 1 where the gluon is collinear with the
quark or antiquark or where the gluon is soft. As we shall see shortly, these singularities are
cancelled out in the total cross-section to next-to-leading order in ag. Using dimensional
regularization, (R.1]) can be evaluated to give,

Crag 2 3 19

9% (e) = oy - H(e) e_2+z+7_ﬂ2+0(6) (2.3)

where

1
:—4—
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Figure 6: Leading order and virtual gluon Feynman diagrams
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0 = 55%r2 =29 (4m)*,
=1+ 0(e) (2.4)

and n = number of dimensions.

The total cross-section to order ag is obtained by adding the contributions from the
leading order and virtual gluon Feynman diagrams in figure f] to (R.d). This contribution
is

o0 [1 + Cg:SH(e) {—32 - % — 84w+ O(G)H . (2.5)

€
Taking Cr = 4/3 (for the SU(3) colour group), the total cross-section is found to be [Rq],

(6%
Ototal = 00 [1 + 75 + O(aSQ)] . (26)

For massless partons, the QCD correction at O(«g) is independent of the nature of the
exchanged boson. Hence at this order for Z boson exchange,

as
Ototal — UQZ[l + 7] (27)
where
VA 2 2 2 2 Ama® K
off = 3) (A2 + VA(AS + VAT
q
2

K= V2GPMZ (2.8)
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Ay, Vy, Ae and V, are the axial and vector coupling constants for the quarks and leptons
respectively, Gr is the Fermi constant, My is the pole mass of the Z boson and I is the
total decay width of the Z boson. Note that this is the cross-section at /s = M.

As was mentioned earlier, it can be seen that the collinear and soft singularities in (R.3)
have been cancelled in oyyia. However, writing oot as a sum of two separate parts (.9)
and (2.), makes it possible to generate a Monte-Carlo events in z,, x; space which can be
fed into Herwig++ to simulate 2 and 3-jet processes. This is the subject of section f.

3. MCQ@QNLO method

Writing oota1 explicitly as the sum of equations (B.J) and (R.5) gives

C 2 3
Ctotal = 00 [1 + FaSH(e) (—6—2 N O(e))

2 €

+0m%m%%+§+§_ﬁ+m®] (3.1)

2 €

This can be re-written in integral form as

— ao/dﬂchwq [2 _ ;l—;CF {M(zq,z4,€) — 3} + 3—;CFM($qaCU(ja 6)] (3.2)
where
Tg, T, €) = H(e) (1 —e)(@] +77) + 2¢(1 — zy) — 2¢
Mg m)‘[u—xau—xau—wa[ -2l -2 2] >

is the eTe™ — ¢gg hard matrix element and z, = 2— 1z, — z7. Now, if we define a functional
F; as the functional which represents hadronic final states generated by the parton shower
starting from a configuration i, a generating functional for the process ete~ — hadrons
can be written as

ag ag
F = oo / d.%'quq |:qu {2 — %CF (M(I'q, xq) — 3)} + qug%CFM(xq, 1’@)] (34)
where Fjg is the functional representing the shower final states resulting from the process
ete” — qq and Fg, represents the final states from ete™ — ggg. We have set € = 0 so
that H(e) = 1 and M(zy, 24, €) = M (x4, v7) which is defined in (R.1)).

This would be wrong however because configurations starting with ¢g, would also
radiate quasi-collinear gluons, with a distribution, M¢ (x4, z4) given by the parton shower.
Likewise, configurations with ggg would generate gg-like configurations if the gluon is quasi-
collinear to the quark or antiquark. Mc(z4,z4) is the parton shower branching cross-
section, which in the massless case is given in Herwig++ by

2

retrg—1

ag 1 + < . mqq >
2 (1= ) (1 — )

ag
%CFMC(%@Q) =



for a gluon branching quasi-collinearly off the antiquark. (Interchange z, and x4 for a gluon
branching off the quark). This can be derived from the quasi-collinear splitting function
defined in terms of the Herwig++ evolution variables, 2z and ¢ in (B.6) R1:

dP = — 1—2)¢°] = 1 - — 3.6

(a = q9) = 5 —as[="( Z)Q]q21—z + 2 (3.6)
where z is the momentum fraction of the quark after gluon emission relative to the parent
quark and ¢ is an angular variable related to the relative transverse momentum, pt of the
quark after gluon emission via:

pr = /(- 2226 — i2) - 2Q,7. (3.7)

p = max (m, Q) and Q92 is the minimum virtuality for the quarks and gluons which is
required to define a resolvable emission. The Dalitz plot variables x, and x4 are related to
the evolution variables z and ¢ via;

zg =1—-2(1-2)K,
g = (2—xg)r+ (2 —71)\ /22 —4p (3.8)

where

k=21 (3.9)

By changing the evolution variables in (B.) to the Dalitz plot variables in the limit where
m = p =0, (B.H) can be derived. The Jacobian factor for the transformation is

2(1—=2)\ /22 —4p. (3.10)

The equations given above apply to a radiating antiquark. For a radiating quark, inter-
change x, and z5. Imposing the condition

K < %(1—%\/1—4[)) (3.11)

defines the regions of the phase space covered by the parton showers i.e the quark and
antiquark jets. In the massless limit this yields the function ©pg in (B.19) which defines
the phase space regions J,, J; and D in figure .

Ops = O[(1 — zg)(zq + g — 1) — 22 (1 —29)] + O[(1 — 2g) (wg + 25— 1) — 2 (1 —z,)] . (3.12)
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Figure 7: Phase space for z4, x5 showing hard (D) and soft/collinear (J,,J;) gluon emission
regions.

The full integration region is shown shaded in the figure above. Regions J, and J;
include soft and quasi-collinear gluon emission events whilst region D includes hard and
non-collinear gluon emission events, giving rise to additional jets.

Having defined M, we can now obtain the correct overall functional by subtracting
the integral of (B.J) from the second term in (B.4) and adding it to the first term:

[0
F= ao/dqumq Fu {2~ S2Cr (M = Mc = 3)}+ Fury 5 Cp(M - Mo)| . (313)

This subtraction is relevant only to regions J, and J; in figure [j which include soft and
collinear emission events. In region D, which contains hard emission events, we simply inte-
grate the hard matrix element, M (x4, x5) over the region. Therefore the overall generating
functional can be written as

F = op [/dequq[ qaq {2— g;c (M — M¢ — 3)} qug2 CF(M—MC)]
+/Dd1'quq|: aq {2— Z;C (M — 3)} qqg CFMH (3.14)

where J denotes the region J, U J;. Note that the total cross-section can be retrieved by
making the substitution Fg, Fyg = 1 in (B.14) as shown.

ag ag
otal = dredr;32 — —=Cp(M — Mc — 3 —Cp(M — M,
Ototal UO[/J Lq wq{ o F( C )+27T F( C)}



ag ags
+ /dequq{Q— S Cr(M - 3)+ gcpM}] . (3.15)

The ‘Hit or Miss’” Monte Carlo method was used to evaluate the integrals and the events
were generated using the importance sampling method. The algorithm is described in

appendix [Al

4. Heavy quarks

So far, we have discussed the limit in which the quark and anti-quark are massless. We
shall now discuss the case where heavy flavour quarks are produced i.e. charm quarks of
mass 1.6 GeV and bottom quarks of mass 5 GeV. There are two ways in which this can be
treated. Both methods are described below.

4.1 Method 1: using the heavy quark matrix element

+

The 3-particle differential cross-section for the process ete™ — V — QQg, where V repre-

sents a vector current like the photon is given by [RJ];

1 d?oy _asCp (ng +2p)% + ($2Q +2p)% + (v 2p 2p (A1)
oy drgdry 2w v (1+2p)(1 —2g)(1 —zp) (1-29)* (1—1p)? ’
where
2
m
P = —Q7
s
v=+/1—-4p,
Gv = —8p(1+2p),
oy = oo(l+2p)v. (4.2)
For an axial current contribution ete™ — A — QQg, we have
1 d?o 4 _ as Cp (xQQ +2p)* + (5'3% +2p)? +Ca B 2p B 2p (4.3)
oadrgdrg 27 v (1 —2q)(1 —zg) (1-29)* (1-1p)? '
where
Ca = 20[(3 + 24)* — 19+ 4p],
o4 = ogv. (4.4)

oy and o4 are the Born cross-sections for heavy quark production by a vector and axial
current respectively whilst o is the massless quark Born cross-section.

Since the partons are massive, the phase space available for gluon emission is reduced.
It is determined by the triangle relation:

A(xQQ - p,x% - p, xi) <0 (4.5)



Figure 8: Heavy flavour phase space for zq, vg showing hard (D) and soft (Jg, Jg) gluon emission
regions. Not to scale

where A(a, b, ¢) = a®+b?+c? —2ab—2ac—2bc. This is equivalent to satisfying the condition

(1 — :CQ)(l — xé)(CCQ + Tg — 1) > ,0(2 —xQ — xQ)z (4.6)

in the phase space.

Just as in the massless limit, the phase space region can again be split into 2 regions Jg
and Jg, containing soft and quasi-collinear gluon emission events and a region D containing
hard and non-collinear emission events as shown in figure §. There is also an additional
region labeled O outside the phase space which as we shall see in ([.g) generates 2-jet
events.

As in the massless case, the total 3-particle cross-section to O(ayg) is calculated by
adding leading order and virtual gluon contributions to the integrals of (f.1]) and ({.3) over
the phase space in figure §. This yields for photon exchange [2(]

(6%
Ototal =— OV |:1 + 7S:| (47)

where ¢; ~ 1+ 12p [RJ.
For Z boson exchange, to O(ag), the cross-section is given by [(]

a a
Ototal = OV |:1 + Cl_S:| + 04 |:1 + d1—5:| (48)
™ ™
where d; =~ 1 — 22p [J].

Following the same procedure as for the massless case, Monte Carlo events can be

generated by writing oota explicitly. For example, the jet generating functional, F' can

,10,



now be written as;
F=oy |:/ dedeFQQ{Q + 301%01:} (4.9)
o 2m
+/ dede [FQQ{Q — %CF(M — 361)} + FQQ %CFM]
D 27 92m
+/ drgdzg [FQQ{2 ~ 35Cp(M — Me - 301)} + Fogy s Cp(M — MC)H
J 27 92m

where J = JoU.Jg, M is the differential cross-section defined in (Ed)) and M is the heavy
quark quasi-collinear branching probability given in (B.6).

Just as in the massless limit, setting Fo5, Fipg, = 1 in (E.9) recovers the vector ex-
change part of oyt in (J.§). The only difference is the integral over the region O outside
the phase space which is required to recover the full cross-section. As before, the coefficients
of Fog and Fg, generate 2-jet and 3-jet events respectively. Details of the evaluation of
the integrals can be found in appendix [J. Event generation follows the same lines as
described on appendix [A.

4.2 Method 2: using the massless quark matrix element

Since the masses of the charm and bottom quarks (1.6 and 5 GeV respectively) are small
compared to the center of mass energy at the Large Electron-Positron (LEP) collider
(91.2 GeV), they can in the first approximation be assumed to be massless. Hence, the
massless matrix element can be used to obtain the 4-momentum distributions for charm
and bottom quarks as described above for up, down and strange quarks. This is less
rigorous than the method described in section .1 but it has the advantage of a smoother
distribution of events due to the unweighting procedure being more efficient. This is the
method used in this paper.

5. Results on ete™ annihilation

The methods described above were used to generate ete™ events for comparison with
LEP 1 data. Details of the assignment of partonic final-state properties are described in
appendix [ Figures PHI3 show comparisons of event shape distributions obtained from
our results and LEP 1 data. The massless quark matrix element method described in
section .4 was used for heavy quark generation. Also compared are event shapes obtained
from Herwig++ with the matrix element correction switched on. This is the method whereby
emissions are only accepted into the dead region D of the phase space at a rate given by
the matrix element. In both cases Herwig++ version 2.0.1 was used. The hadronization
scale which is the scale at which the shower is turned off was set to the default value of
0.631 GeV and the 2-loop ag value was used.

Figures [[4-Jld show comparisons of identified particle spectra from events of different
flavour with SLD data [R4]. In general we are able to give a good description of the data
with the MCQNLO method. The MCQNLO results for the LEP event shape distributions
do not differ greatly from the matrix element correction results. For example, the thrust

— 11 —
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Figure 9: Thrust, Thrust major and Thrust minor. Data from @}

distribution appears to suffer from the same problem of generating too much transverse
structure, leading to less two-jet like event shapes.

However, despite the similarity in results, we can be confident that the MCQNLO
results are normalised to the full NLO cross-section including virtual corrections unlike the
matrix element correction.

The identified particle spectra includes hadron momenta distributions from heavy
quark production. Although the results are similar, in some cases the MCQNLO results
are slightly better than the matrix element correction results. This can be attributed to
the better treatment of the heavy quark production cross-sections in the relevant plots.

- 12 —
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Figure 10: Oblateness, Sphericity, Aplanarity and Planarity distributions. Data from [@]

6. Drell-Yan lepton pair production

6.1 Kinematics

The method described above was then applied to Drell-Yan electron pair production at the
Tevatron. In Herwig++ as it stands, first order corrections to this process are implemented
as described in [§. At leading order, the relevant subprocess illustrated in figure [ is
q+ ¢ — V. The invariant mass ) and the rapidity Y of the boson V can be written in
terms of the momentum fractions of the incoming partons, x, and x5 as

2
Q° = zqx49,

,13,
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Figure 11: C Parameter and D Parameter distributions and the high, My and low, Mgy

hemisphere masses. Data from [RJ].

1., x4

Y =-In

2 SITq

(6.1)

where S is the proton-antiproton center-of-mass energy. Inverting this, we have

Lq

Lg

\/%Ze_y.

(6.2)

Next we consider the real emission subprocesses illustrated in figure [f. It is convenient to

— 14 —
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hemisphere masses, Mg;g. Data from [@]

express the kinematics of the NLO diagrams in terms of Mandelstam invariants. For gluon

emission, we define

s = (pq +p¢?)27
t = (pq _pg)2a
u = (pg —py)° (6.3)

with Q2 = s +t 4+ u. For the QCD Compton process, these are given by

s = (pq +pg)2a

,15,



T T T T T T T T | T T T T | ] 10.00 F
1000 MeeNo 00
5.00 — B R Hw++ ME I
2.00
100" - T 100
050 * - _
050
,,,,,,,
010 —
F 1 o020
0.05— -
- 1 o10f
0‘01 1 1 1 1 | 1 1 1 1 | 1 'E | 0‘05 L
0.0 0.1 02 03 00
Bitt
Figure 13: The difference and sum of jet broadenings Bgig and Bgyy. Data from [E]
’ 2
t = (pg —Pg)"
\2
u = (pg—pg)” - (6.4)
We can also express the kinematics in terms of the variables « and y which are given by
Q2

r=—0<2<1,
s
y=cosf;—1<y<1, (6.5)

where 6 is the scattering angle of the emitted parton in the partonic center-of-mass system.
Using these definitions, we can show that

Q2 = zT12295,

1, m2-(1 -5ty
Y_Ql 22— (1—2)(1 —vy) (6.6)

where x1, 2 are now the momentum fractions of the incoming partons in the NLO sub-
process and are given in terms of x4, xg7 by

o [2-(-a)(-y)
e\ 2-0-a)(+y)
25 [2—(1—-z)(1+y)
2= x\/Q—(l—x)(l—y) ' (6.7)

At the parton level the Born cross-section for the production of a virtual photon is given
by:
. Ama? e
7 em —q;
o) = ———— 6.8
0 9@2 ( )

,16,



The scaled momentum of charged particles for all events The scaled momentum of charged particles for all light quark events
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Figure 14: The scaled momentum distributions of all charged particles.

where @) is the electron pair invariant mass. Extending this to the hadronic level, the Born
cross-section becomes
do (S, Q%)Y ; _
EGN. — [ dnydag 3 oblfujalion) fuotan) + 0 = 06Q° —24705)  (69)
i
where fg /4 (zq,, @Q?) is the distribution function for parton 4 in the hadron A evaluated at

the Born scale, Q.
The differential cross-section for real gluon emission is given by:

d’o Dy(x1)Dy(w2) a5 -, Q

oodsdt 99 Dy(zq)Dg(x7) 27 Pty

(s +1)* + (s + u)?] (6.10)
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The scaled momentum of kaons for all events The scaled momentum of kaons for light quark events
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The scaled momentum of kaons for charm events The scaled momentum of kaons for bottom quark events
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Figure 15: The scaled momentum distributions of kaons.

where Cr = 4/3 and Dy(x1) = x1fg(x1) etc. Note that in this and subsequent equations,
oo is actually Jgﬁ. The PDF ratio takes account of the change of kinematics from the
Born momentum fractions x4, x5 to @1, z2. The corresponding differential cross-section for
the QCD Compton subprocess is given by
d’o Dy(z1)Dy(w2) s, Q% 5 | o 2

—_— = = ———FL—Tpr— t 2 6.11

oodsdt 9" Dy(z,)Dg(xg) 27 Fsit [57 417+ 2Q7] (6.11)
where Tr = 1/2. The shower variables, z and & for the Drell-Yan processes are discussed
in detail in [21]. The invariant mass and rapidity of the boson are chosen to be preserved

in the definition of the shower variables. Also discussed is the choice of the jet regions
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The scaled momentum of pions for all events The scaled momentum of pions for light quark events
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Figure 16: The scaled momentum distributions of pions.

(where gluon emission is soft and/or collinear with the parent parton) for the quark ¢, and
antiquark, ¢. In terms of the shower variables for the quark jet, the Mandelstam variables
become

Q*[1+ (1 — 2)A]

)

t=—-Q*1 —Zz)/%,
u=—(1-2)s (6.12)
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Figure 17: Jet and dead regions in s-t phase space for ¢ +§ — V + g. Not to scale.

The jet region is then defined as the area of the s — t phase space where

_ st
K= TQ2 < Kgq . (613)

For the antiquark jet, we have t < u and thus

= < iy (6.14)

In order to ensure that the jet regions touch without overlapping we require &, = 1/4.
In the discussion that follows, we make the symmetrical choice #; = k5 = 1. The jet and
dead regions corresponding to this choice are labeled J,, Jz and D respectively in figure [[7.
Now the gluon emission probability off the quark in the parton shower approximation of
Herwig++ is

d’pP ag 14 22

= o2 1
dzdic 27 TR(L - 2) (6.15)
which gives a differential cross-section
d’o Dy(z1)Dg(m2) s ., (s+u)[s® + (s +u)?]
oodsdt Dy(zq)Dg(xq) 27 s3tu

Interchange ¢ < u for the corresponding emission cross-section off the antiquark. Note
that the parton shower approximation in (p.16) overestimates the matrix element expres-
sion (B.10) and becomes exact in the collinear and soft limit ¢+ — 0. For the Compton
subprocess ¢ + g — V + ¢, the parton shower approximation is given by

o Dy(a1)Dy(a2) as, . (s + W + (s +)?

=My, =—"—"<—T, . 6.17
oodsdt Cag Dy (zq)Dg(xg) 27 r st (6.17)

Interchange t < w for the subprocess ¢ + ¢ — V + ¢. In this case there is only one jet
region which corresponds to the emitted quark being collinear with the gluon. The same
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Figure 18: Jet and dead regions in s-t phase space for ¢ + g — V + g. Not to scale.

jet definition in (.13) is used and the corresponding region shown in figure [[§. Now, we
can further re-write the above expressions for the exact differential cross-sections and the

parton shower approximation in terms of variables « and y. Using these definitions,

CQRU-a)(1-y)

;=
2z ’
.= 2a _292(1 +9) (6.18)

In these variables the differential cross-sections become

Dgy(x1)Dg 2(1—2)? + (1 + x)?
a,, = DaleD)Da(@s) as o (1 —2)° +(1+2)

Dy(zq)Dg(xq) 27 (I —2)(1—y?)
M = Dy (1) Dg(2) s o U+ (0 -y’+2200-y*)+2°A+y)*)(1 —y+a(l+y))
" Dg(xq)Dg(xq) 2m 41 —2)(1-y?) ’
L DyeDy(a) s B+ =) — 21 —a)+2(1 +a?)
" " Dy(g) Dylg) 2m 41 —y) |
Dy(x1)Dy(x2) as,, 1+y? —2zy(1 +y) + 22(1 + y)?
Mt = Dy e Dyfag) 25 TR (649

Interchange y < —y in Mc,, for the antiquark jet and in M, and Mc,, for the process
g+q — V +q. The corresponding jet regions of x — y phase space are shown in figure [[9.
As we shall see in section [], expressing the cross-sections in these variables makes it easier
to carry out the MC@NLO subtractions and divergence mappings.

The scale at which the parton distribution functions D;(z1), D;(x2) are evaluated was

M= \/g (6.20)

which in terms of the Herwig++ variables is given by /(1 — 2)?&Q?. This is equal to

| ki |, the transverse momentum of the emitted parton in the partonic center of mass

set to
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Figure 19: Jet and dead regions in x-y phase space for ¢ + g — V + g. Not to scale.

frame. This is the same scale used in the parton shower and is also the scale at which «ag
was determined. The Drell-Yan cross-section can be computed in 2 different factorization
schemes: the DIS scheme and the MS scheme. For comparison, both cross-sections were
used for the event generation in this paper. The NLO parton distribution functions were
obtained from the CTEQ5d (DIS) and CTEQ5m (MS) PDF sets which are frozen at a
scale of 1GeV. For M < 1GeV, f(x, M) was set equal to f(z,1).

6.2 Next-to-leading order cross-section

In the massless limit, we can integrate the differential cross-section (p.10) for the real
emission process ¢ + § — V + g over y using the dimensional regularization scheme to

regulate the divergences. The result is [R4]

UELO:%C 4r\ Tl —¢) 35(1_35)_214'7562
o 27 p? ) T(1—2€) |€2 e(l—x)p
_ 2
+A(L + 22) <M> _olte 1n4 (6.21)
l—x J, 11—z

where € is as defined in (P.4) and the plus-prescription is defined by

| dsta@)sb@) = [ at)lbta) - ) (6.22)
0 0

Now in addition to the real emission diagrams in figure |, we have virtual gluon correc-
tions arising from self-energy and vertex corrections. These are illustrated in figure R0
Integrating these diagrams using dimensional regularization we obtain

NLO € —
v _ X, (4—7;) 5(1 — m)LE)) [—3 _3 gyl (6.23)
7! €

00 2w
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Figure 20: Virtual gluon corrections to the quark-antiquark annihilation Born term ¢+ ¢ — V'

The product of an infrared and collinear divergence is contained in the 1/¢? term and is
cancelled out between the real and virtual diagrams to leave a pure collinear divergence,
proportional to 1/e. This is cancelled out by QCD corrections to the quark distribution
functions due to real and virtual gluon emission. In the DIS factorization scheme, the
NLO distribution function evaluated at a scale up is given in terms of the bare distribution
function f(z) as

fol,ng) = f3(2)

s 1 [tdw 1+22 3 1 T(1—e) u2
el M habed T 4 2s5(1— el Sel7 N P
+27TCF1—6/96 w Ja () [((1—z)++25( %) cT(1—2¢) " " i

+(1+22) <%>+_;(1—12)+ - 1;22 In
+ 3422 — (g + %2> 5(1— z)} (6.24)

where z = 2/w. Combining these corrections gives the full NLO cross-section ratio [2q]

oNLO o x[Dq(xhﬂ%)DQ(x?vM%’)—i_qH(ﬂ —x @s 73
o " Z/ tode: D, () Dy(a) -+ o |
In(1 — x) 4
—6—dz 421422 —— 1+ -7 ) 0(l—a
a4 (7)< o)
1422 3 ,u2
(A ot || (029

where Zq signifies a sum over parton flavours gq. The residual collinear divergence has
been cancelled as expected. The last term in the O(ag) term proportional to In 5—22 can be

F
eliminated via the DGLAP equation [P7—B(] which describes how the distribution functions
evolve with the scale p.

d

Q L dw T
Tt = [P, (1) (6.26)
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where the splitting function

1+ 22 3
P, =Cp|———+ =601 - 6.27
l2) = Ce | 5+ 3501 - 2] (6.27)
describes the probability of a quark coming from the splitting, ¢ — qg. We can use the
above expressions to replace D, (w, u%) with Dgy(x, %) in (B:25). The logarithmic term is
then cancelled to give

_ gy HPa@1 p?) Da(wa, i) g =g [ as 3
‘%/dﬂ? D, () Dy(a) pa-o+gor{

- 6— 4z +2(1 +2?) (%LJF <1+§7r2> (1 —x)H . (6.28)

O.NLO

g0

7. MCQ@QNLO method

Now by writing the virtual and PDF corrections in terms of the hard matrix element (|6.1(),

we can rewrite (p.2§) in integral form as

oNLO 2[Dg(z1, 42) Dg(xa, p2)+q < q] 1 N 5
ao:§/“@H Dy Do) 5@“ﬁ+ﬁ@&;5;

— 6 — 4z +2(1 + %) <m§1_7_;6)>++<1 + §w2> 5(1 —x)>> —qu}

+qu] . (7.1)

The first term in the curly brackets is the sum of the Born term, virtual and QCD PDF
corrections expressed as an integral over the variables x and y. Since the area of the
x — y phase space is 2, there is a factor of 1/2 in the integrand. The remaining term is
the real emission contribution to the cross-section. Now we can define a functional F as
in (B.4) which represents final states generated from the 2 different starting configurations;
q+q—Vandqg+q—V +gas

o = 5 [ aute [ PR D (o1 2
_ (ﬁa—@cw(ux?) <%>++ (1 n §w2> s5(1 — m)) _ qu}
+FVquq} . (7.2)

where Fy and Fy, are functionals which represent final states generated from ¢ +q — V
and ¢+q — V + g starting configurations respectively. As discussed in section [, this is not
entirely correct because of double counting in the final states represented by Fyj arising
from the parton shower. To resolve this issue, we subtract the contribution from the
parton shower contributions, M¢,, from the integrals in jet regions J,; and Jz in figure 9
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and integrate the full matrix element M,z over the hard emission region, D. The modified
generating functional then becomes

[ {0 e (2

— 6 —dx +2(1 +2?) <M>++ <1+§w2> 5(1-;:;))) —qu+Mqu}

1—=x

+Fyg {Myq — Mqu}}
+ Z/ e e (s -+ e (g

— 6 —4x +2(1 +2?) (%LJF <1+§772> 5(1—;5))) —qu}

—|—Fngqq:| . (7.3)

where J = J, U J;. A similar procedure can be adopted for the Compton subprocess which
as discussed has one jet region. In this case the QCD PDF corrections cancel out the
collinear divergence in the matrix element. The final result is

2
o(x1, 1?) Dy (w2, %) + ¢ < g] ag 3 9 o
F99 = F 2215 (5 - =
Z/ [ V{ D, () Dy(ay) 2n F2\2 T

z[Dy(w1,p*) D2, 1*) + ¢ = glas,, 1 (3 9
+Zq: /D [FV { 1 Dq(xq)DQt?(xt?) gTFi (5 —ort §x2
+($2 +(1+ xQ)) In(1 — x)> — ng} + FVqug:| (7.4)

where Tp = 1/2 and Fy is the functional which represents final states generated from a
q+ g — V + q starting configuration. Details of the algorithm used for event generation
can be found in appendix [f.

8. Intrinsic pr

In QCD, the transverse momentum of partons arises in two ways. The first which has
been discussed above is due to the real emission of gluons and involves large momentum
transfers. This is often termed the perturbative component of the transverse momentum
and at large pr behaves as 1/pr2. At low pr values, with the resummation of the double
logarithms from soft gluon emission (as is done in parton shower generators like Herwig++),
this component of the pp vanishes as pr — 0.

The second way in which partons acquire transverse momentum is non-perturbative.
It involves small momentum transfers and cannot be calculated by perturbation theory.
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Figure 21: x? per degree of freedom.

Therefore this has to be modelled to fit the observed data at low py values. A small part of
this contribution can be attributed to quarks being confined in the transverse direction to
within the radius of the proton and therefore gaining some intrinsic transverse momentum
due to the uncertainty principle.

Data on lepton pair transverse momentum from the CFS collaboration [Bl] suggest
that a Gaussian distribution (B.1) best describes the intrinsic pr distribution.

: ()
h(pr) = 5€ PTrms (8.1)
pTrmS

where pr,, . is the root-mean-square pr of the Gaussian distribution.

The intrinsic pr (B.]) was implemented in Herwig++. The intrinsic pr component is
generated according to the distribution using a random number generator and added to
the parent partons obtained at the end of the space-like shower originating from the hard
QCD process.

Figure R1] shows the distribution of the x? per degree of freedom obtained for different
P, fits to Tun I (1800 GeV) CDF data [Bd] for Drell-Yan Z boson production and the
best fit value can be seen to be pr,,.. = 2.1 GeV.

9. Results on Drell-Yan production

Details of event generation and partonic final state properties are described in appen-
dices [{, [{ and [§. Once generated the events were showered using Herwig++ version 2.0.1
and the distribution of the transverse momentum of the Z boson was obtained. The

hadronization scale was set to the default value of 0.631 GeV and the 2-loop ag value was
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Figure 22: Transverse momentum of the Z boson. Data from [@]

used. Figure P shows a comparison of the distributions obtained for both factorization
schemes with CDF Run I data [B2].

Also shown in figure B3 are the rapidity distributions of the Z boson and the positively
charged lepton arising from its decay. For comparison distributions are compared against
Run IT (/s = 1.96 TeV) data from the DO collaboration [BJ].

As can be seen in figure P3 the MC@NLO method provides a good description of the
CDF data for the transverse momentum of the Z boson. It also proves to be stable with
respect to change of scheme. Figure P also shows the effect of the pr distribution in
the low pr region. The red dashed line corresponds to setting pr.,.. = 0 GeV whilst the
black line corresponds to setting pr.,.. = 2.1 GeV. Comparing the two, one can see the
effect of adding the non-perturbative intrinsic pr to the parton shower which gives a better
description of the data.

In addition, figure PJ shows that the predicted rapidity distributions of the Z boson
and the positive lepton produced are stable with respect to the change of scheme.

10. Summary and conclusions

We have successfully applied the MC@NLO method to eTe™ annihilation and Drell-Yan
processes modelled by the Herwig++ event generator. In general, we conclude that the
MC@NLO method provides an improved description of event shape distributions when
compared to pure leading order Monte Carlo results. As we have seen, the MC@QNLO
results for eTe™ annihilation do not differ greatly from the matrix element correction
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Figure 23: Rapidity distributions of the positively charged lepton and the Z boson.

results although we are now confident that the results are normalised to the full NLO
cross-section. Better results were obtained using the positive weight Nason@NLO method
where the hardest gluon emission was generated first [[J]. The MC@QNLO method applied
to the Drell-Yan process gives a good description of the transverse momentum and stable
predictions for Z boson and lepton. The differences between the performance of the method
for eTe~ annihilation and Drell-Yan production may be attributed to the different shower
variables for initial state and final state radiation.

In addition, we have also successfully implemented the intrinsic pr component for
hadron-hadron collisions into Herwig++.
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A. Monte Carlo algorithm for ete~ annihilation

The integrals in (B.I7) can be evaluated using a variety of Monte Carlo methods. In this
report, the ‘Hit or Miss’ Monte Carlo method is used. This is the simplest and oldest form
of Monte Carlo integration and essentially involves finding the area of a region in phase
space by integrating over a larger region, a binary function which is 1 in the region and
0 elsewhere. The sampling method used for the points x4, x5 is the importance sampling
method whereby more samples are taken from regions where the integrand is large and
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less from regions where it is small. This ensures that the sampled points have the same
distribution as the integrand.

First, let us investigate what each of the terms in (B.15) signify. The program Herwig++
generates n-jets from an inputed set of n momentum space points (z,...,z,). So for 2
and 3-jet formation, we require sets of 2 and 3 momentum space points with each set
corresponding to an event in the phase space. The relative numbers of these events as well
as the x; values can be obtained from (B.If) as outlined. (2-jet events have x4, 25 =1). In
the discussion that follows, /s was set to Mz = 91.2 GeV and ag(M,) = 0.118.

1. Randomly sample points x4, x4, in each of regions J,, J; and D of the phase space and
using the “Hit Or Miss” Monte Carlo method, evaluate the 4 integrals, 152), 1 §3), Ig)

and Ig) as well as their absolute sum, 1.
o / dagdag |2 - S>Cr {M — Mo — 3 .
J T
IL(]?’) = /dquxq;l—SCF[M — Mc],
J T

? = / dgdag |2 = S5Cp {M -3} ,
D 2T
3 ags
¥ = /D dgdegy>CpM,
2 3 2 3
T= 1P+ 1 1P |41 1) |+ 115 (A1)
Note also the maximum values of the integrands in [ 53) and Ig’).

2. The eventual proportion of 2-jet Monte Carlo events will be determined by the ratio

(2) (2)
W. Likewise, the proportions of 3-jet events in the soft regions J,, J; and the

(3) (3)
hard region D are determined by the ratios # and @ respectively. The algorithm

below is then used to importance-sample the 3-jet events so that the corresponding
(x4, xq) values of the Monte Carlo events have the same distribution as the integrands
in 7% and 119

J D -

(a) For event generation in region R (R = D, J,; or J;), randomly select a point
Zq, g in that region.

)

Is | w(zg,z5) | > R | Wmax | 7 (R is a random number between 0 and 1 and

(b) Evaluate the absolute value of the integrand in Ig’ for this point, | w(zq, z4) |.

| Wmax | is the maximum value of | w(zq, 2g) | determined in Step 1).

(c) If NO, return to (a). If YES, accept the event and set w"™™VW= sgn w(z,, z4)
ie. w™ = 1 if w(xy,zg) is positive and —1 if negative. (In regions .J;, and
Jg, M < Mg¢, hence the integrands and the integral, 153) in these regions are

negative). This process is called unweighting.

(d) Repeat the process until the correct proportion of 2-jet and 3-jet events have

been generated.
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(e) Using the importance-sampled points, obtain an estimate for the integral,
Ig’B) = w x I, where N is the total number of Monte Carlo events gener-

ated. We typically use N = 106.

This method of generating Monte Carlo events is termed ‘Monte Carlo at Next to Leading
Order’ or MC@NLO. In this way, for a total of N events, the correct proportion of 2-jet and
3-jet events with £ unit weight is generated with the same distribution as the integrands
in (A.1)). All of these integrals are finite, but the integrands are divergent at isolated points
within the integration regions. Before the sampling could be carried out, the divergences
in the integrands (which cause problems in the sampling process) had to be taken care of.
This is the described in section [B.

B. Divergences and mappings for ete~ annihilation
B.1 Divergences in dead region D
In region D, the hard matrix element:

xg —i—x%
(1 —2¢)(1 —zq)

M (g, 2q) = (B.1)
diverges as (z4,25) — (1,0),(0,1) and (1,1). To avoid these divergences, one can map
the divergent regions into another region in such a way that the divergence is regularized.
This is ensured by the fact that the region of integration vanishes as the singularity is
approached. The mappings used are presented.

B.1.1 Region D : (1,1)

There is a double pole in M at (z4,z5) = (1,1). To avoid this pole, the region x4, x5 >

% is mapped into a region which includes D but whose width vanishes quadratically as

zq,25 — 1 [RI]. The mapping used is:

/ 1 7
Tg=1- [Z‘(l_xq)] =1 T
/ |3 5 1 3

when z, > x5 > %. This mapping also introduces an extra weight factor of 2(1 — x,q)

in the integrand. (Interchange x, and zg in both the mapping and weight factor when
Tg > x4 > %) Figure P4 shows the region mapped (solid) and the region mapped onto
(dashed).

B.1.2 Region D : (1,0),(0,1)
A simple pole is approached in M as (x4,25) — (1,0) and (0,1). In the region z, < g,

Tg > %, a new set of random points is generated for points which fall between the lines
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Figure 24: The mapped region (solid) and the region mapped onto (dashed)

g = 2.5(1 — z4) and x4 = 1 — z4. These points have an extra weight factor to cancel the
divergence as the pole is approached. The mapping used is:

/

z; =1—0.25r,

= (14 1.5r1)(1 — ) (B.3)

T Q

X

where 71 and ry are random numbers in the range [0, 1]. This mapping introduces a weight

factor of 2ry in the integrand. Interchange z, and x5 in the mapping for the region where

5

g < §,Tq > %. The mapped regions are shown with solid boundaries in figure 3.

B.2 Divergences in jet regions J,; and Jg

In both regions J; and Jj, there is a simple pole in the term (M — Mc¢) at (x4, z5) = (1,1).
In the region z,, x5 > %, a new set of random points are generated which have a weight
factor to cancel the divergence. The mapping used in region J;, where x5 > z is:

xy =1-0.25r,

rg=1—(1—a)r (B.4)

where 71 and r9 are random numbers in the range [0, 1]. The weight factor for this mapping
is 2rq. For region Jz, where x, > x4, interchange x, and z; in the mapping. The mapped
regions are shown with solid boundaries in figure P§. There are no poles at (1,0) and (0,1)
because at these points the singularities in M and M are cancelled out in the subtraction.

B.3 Mapping method

To illustrate the method behind determining the mappings, the mapping in section
will be explicitly calculated here. Figure R§ shows the mapped region which is between
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Figure 26: Mapped regions
the lines x5 = 2.5(1 — z4) and x5 = 1 — z,. The integrand in this region goes as —_ and

1733(7
hence is divergent as x5 — 1. By performing the change of variables shown in (B.3), this

divergence can be regularized.

1 2.5(1—aq)
/ dxq/ degf(zq, ) (B.5)
0.75 1

g
1 1

= / drg/ dr1(0.25% x 1.5r9) f(zg =1 — 0.25r9, 2, = (1 + 1.5r1)(1 — z5)) .
0 0

r1 and ry are random numbers between [0, 1] as discussed in section and the factor

0.25% x 1.579 is the Jacobian factor arising from the change of variables. It can be seen

that this Jacobian factor explicitly removes the # divergence in the integrand. Since
q
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INTEGRAL 2 %
With mappings —0.0393 +1 x 1074 0.0339 £1 x 1074
VEGAS —0.03923063 + 6 x 10~® | 0.0339753 9 x 1077
Unweighted events —0.0393+1 x 1074 0.0339+1 x 10~*

Table 1: Comparison of VEGAS with weighted and mapping integrals

True cross-section ratio | Estimated cross-section ratio
1.0375 1.0367 +£1.3 x 1073

Table 2: Comparison of the cross-section ratio with the true cross-section ratio to O(ayg)

NUMBER OF 2-JET EVENTS | NUMBER OF 3-JET EVENTS
934,567 65,433

Table 3: Relative number of 2-jet and 3-jet events per 1,000,000 events

the ‘Hit Or Miss’ Monte Carlo method is used to perform the integration, the weights of
points in the mapped region must be multiplied by an area factor equal to inverse of the
area of the mapped region i.e. % in this case. Hence the weight of a sampled point in this

region is

64
0.25% X 1.5r9 x 5 X f=2nf. (B.6)

A similar treatment is followed for all the other divergences. Now that we have taken care
of the divergences, we need to check that the mappings give the true value of the integral.

B.4 Testing the mappings

The integration package VEGAS [B4] was used to obtain estimates for the integrals in (B.17).
VEGAS is an iterative and adaptive Monte Carlo integration algorithm which is based on
importance sampling and is good for the evaluation of multidimensional integrals.

The algorithm was used to compute integrals I 53) and [ g’) in section [A]. Forty iterations
were carried out with 107 program calls per iteration. The results are compared with the
values obtained with the mappings and unweighting procedure described in sections [
and [J. Also worth comparing are the integrals obtained before the unweighting in step 2
of section [Al This gives a measure of how efficient the unweighting process is. These are
presented in the table 1. The errors in the VEGAS results are not to be trusted as they
appear to be underestimated.

The estimated value for the ratio, U“(;’;a‘ after the mappings can also be compared with
the true value, [1 + =2] to O(ag). This ratio is the sum of the four integrals, [52), 153), g)
and Ig’) outlined in section [A]. Table 3 shows the relative number of 2-jet and 3-jet events

generated from a total of 10° events.
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Integral I§3) Ig’)
With mappings —0.0403 £ 3 x 1074 0.03215 +£4 x 107
VEGAS —0.03989509 + 7 x 1078 | 0.0321728 7 x 107
Maximum |weight| 2360 15

Table 4: Comparison of VEGAS and mapping integrals for charm quarks.

Integral 1 53) 1 g)
With mappings ~0.0483 £2 x 102 0.02809 + 2 x 103
VEGAS —0.0459681 £ 6 x 1077 | 0.02813154+1 x 107
Maximum |weight| 13338 9.3

Table 5: Comparison of VEGAS and mapping integrals for bottom quarks.

Quark flavour | True ratio Estimated ratio
Charm 1.0373 1.0374 £ 6 x 107*
Bottom 1.0385 1.0387 £ 3 x 1073

Table 6: Comparison of the cross-section ratio with the true cross-section ratio to O(as)

C. Heavy quark integrals

Event generation for heavy quark production follows the same lines as discussed in section ]
for the massless case and the soft divergence mappings used are also implemented in the
heavy parton case. 107 events were generated in this way to obtain a better estimate of
the cross-section. The 3-jet integrals obtained are presented in tables 4 and 5 for both
charm and bottom quark production from vector boson exchange. The VEGAS results are
also presented for comparison. The maximum absolute weights in the two regions J and
D are also presented.

76 )

;7 and [g’) here are the corresponding heavy parton integrals to the integrals 153
and Ig') discussed in section [§ in the massless limit. The estimated value for the ratio,
U%a‘ after the mappings can also be compared with the true value at O(ag), 1+ ¢1 5.

The problem with this method arises during the unweighting process described in
section [A]. The efficiency of the unweighting process can be defined as the ratio of the
integral over the region to the maximum value of its integrand ﬁax This is a measure of
the rejection rate in the unweighting process. So the smaller the value of wyax, the greater
the unweighting efficiency. Now, the divergence mappings described in section [B.9 are not
as effective in smoothing out the distribution of event weights in regions Jg and Jg (where
there is a soft gluon singularity) as was the case in the massless limit. This results in a
relatively peaked distribution in the soft gluon region and hence a relatively large absolute

value for the maximum weight (see tables 4 and 5). Due to this, the unweighting process
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Quark flavour | Maximum ’soft’ |weight| | Estimated ratio
Charm 4.8 1.0381 +5 x 1074
Bottom 43.1 1.0439 +2 x 1073

Table 7: Cross-section ratio and maximum weights after phase-space cut-offs.

Ny e}
Q|

ng

wO

e

Figure 27: Annihilation in centre-of-mass frame.

is comparatively inefficient.

To resolve this, we can impose a limit on the gluon ‘softness’ allowed in 3-jet events
from the soft and collinear regions, Jq and Jg. 3-jet events with gluon energy fractions,
T4 below this limit are then considered to be 2-jet events with z¢ and z equal to 1 and
x4 = 0. For charm and bottom quarks, a limiting value of 1 x 10~* was chosen such that
the maximum absolute weight is sufficiently lowered (giving a smoother distribution) whilst
the estimated cross-section is not too far off from the true cross-section (table 7).

The same method was applied for the axial vector boson coupling.

D. Assigning parton properties

Having chosen a phase space point, to generate a full event we have to assign full 4-
momenta, as well as flavour, spin and colour information to the partons. In this section we
address these issues in turn.

D.1 Momentum 4-vectors

Figure R7 shows the production of a quark of 4-momentum p;, an antiquark of 4-momentum
p2 and a gluon of 4-momentum p3 from an e™ e~ annihilation reaction in the centre-of-mass
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frame. It can be shown that the angles 6;; between partons of momenta p; and p; satisfy
the relations,

gt —2(1 —z4) +4p

cos 019 =
V(@32 = 4p)(a2 — 4p)
cos O3 = zqtg — 2(1 — z4) ’
Tg\/x2 —4p
o 9(] —
cos fp3 = Zqty =20~ %) . (D.1)

Ty CC(% —4p
The angular differential cross-section for the process ee™ — ¢q is defined in (D.3) [RJ.
This is the distribution of the angle © between the initial ¢g axis (before gluon emission)

and the ete™ axis.

do
dcos ©

= (1 + cos? ©)oy + 2sin? Qo + 2cos Oop . (D.2)
In the Born approximation,

oy = Boyv + Poaa,

1
o = 5(1 - ﬁQ)ﬁUV\/y
op = ﬁQUVA (D3)
with
. 7'1'0[2 2 A2 2 2
ovv = 5 [QF =20 VeVpxa(s) + (A2 + VA)Vixa(s)] |
2
ye:; 2 2 2
TAA = - [(AZ + V2)Afxa(s)]
a2

ova = 5 [22QpAApx(s) +4AV A Vxa(s)] |

B =V 1-4 9
s(s — M%)
=9
AR T eaT A
2
— 52 5
) = g
2G p M2
5= V2Gp M3 7 (D.4)
Aoy

GF is the Fermi constant, « is the electromagnetic coupling, Mz and I'z are the mass
and total decay width of the Z boson respectively and V; and Ay are the vector and axial
couplings of fermion, f to the Z boson.

By applying the unweighting procedure described in step 2 of section [A] to (D.g), the
angles © for each event can be distributed according to angular differential cross-section.
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Since the azimuthal angles for ¢q production and the ¢ — ¢gg process are isotropic, 4-
momentum vectors for the quark, antiquark and gluon can therefore straightforwardly be
constructed for each event.

Initially all parton 4-momenta were generated in the massless limit. Though this is not
essential for the parton shower, the parton 3-momenta were rescaled by a common factor
using the Newton-Raphson iteration method to give the right parton masses (for heavy
partons) and a gluon virtuality of 0.75 GeV.

D.2 Flavour

To assign flavour to the quarks, we need to investigate the flavour dependence of the total
cross-section for eTe™ — ¢q. Integrating (D-3) over all angles © gives;

of = (5 + %ﬂ(l - 52)>0VV +3%0aa - (D.5)

oy is the contribution of a quark of flavour f to the total cross-section. Hence the quarks
are assigned flavours according to the relative values of oy.

D.3 Spins

To assign spins to the partons, the matrix element for eTe™ — ¢q is calculated for all
possible helicity configurations and its modulus squared is used as a weight in allocating
spins to the quarks and antiquarks. In other words, the helicity configurations are allocated
according to their contributions to the total cross-section. It is assumed that the electron
and positron beams are unpolarised so that the helicities of the electrons and positrons are
assigned randomly.

In the massless limit, the chiral components are the helicity eigenstates and so when
a Z boson (which couples to chiral components) is exchanged, the matrix elements for
different spin configurations are straightforward to calculate. In the heavy parton case,
the chiral components are a mixture of helicity eigenstates so that the matrix element
calculations become more complicated. Also, there are 4 possible helicity configurations
in the massless limit whilst there are 8 helicity configurations in the heavy parton case
(electrons and positrons are assumed to be massless).

As an illustration, the matrix element for the helicity configuration, ey ef qr q is

given in (D.§).
2
CeR2X2)\2 |:C% <\/7§ - pcm> + Clq:{ (? +pcm>:|

— QGQqu{Xl)\ |:C% (% - pcm> + ch <§ +pcm>:| + 62Q2:| (DG)

My = (14 cos©)?

where
_ 2V 321«

S

P (D.7)

c?%, ¢l ¢% and ¢§ are the right and left-handed couplings of the quarks and leptons to the

7 boson respectively and pen, is the centre-of-mass momentum of the quark.
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So far we have assigned the particles into helicity eigenstates. This is because the
interface of the event record to the event generator Herwig++, requires that the electrons,
positrons and partons are in definite helicity eigenstates. In practice however, for an
unpolarised beam of electrons and positrons, the spins of the partons resulting from the
annihilation reaction are superpositions of the helicity eigenstates. The spin density matrix,
p for spin—% particles is given by;

p=35ll+(0)-0 (D.8)

which can be written as
%(1 + al) %(ag — iag)
1 ~ 1 (D.9)
5(ag +iaz) 5(1—ay)
where (o) is the matrix of spin expectation values, o = (04,0y,0,) which are the Pauli
1
2
respectively. Since the helicity eigenstates are also eigenstates of S, (taking the z axis

to be along the quark momentum direction) and since 1(1 + a1) and (1 — a1) are the

probabilities of a parton being in either state, we can assign spin states to the partons by

matrices and %al, as and %ag are the expectation values of the spin matrices S, 5;, Sy

distributing values of a; between 0 and 1 according to their corresponding matrix element
contributions.

D.4 Gluon emission

For the 3-jet events, the gluon can be radiated either from the quark or anti-quark. In-
tuitively, we expect the fastest or more energetic of the two partons to be the least likely
to radiate the gluon i.e. most likely to keep its original direction. In the massless limit,
it has been shown that the relative probabilities of a parton retaining its direction after

production (not emitting the gluon) are in the ratio of their respective energies squared.
2

ieocx; [BH. This notion is used to assign mother partons to the gluons in the 3-jet events.
(For heavy quarks, this procedure is approximate). In addition it can be shown that the
helicity of the gluon equals the non-emitting parton’s helicity which is opposite to the spin

of the mother parton [B].

D.5 Colour

The colour of a parton flows out of its production vertex whilst its anticolour flows into
its production vertex. The gluon carries the anticolour of the quark colour and the colour
corresponding to the antiquark anticolour. This is illustrated in figure R§ for the specific
case where a 7 antiquark radiates a gr gluon and becoming a g antiquark in the process.
(The colour flow lines are essentially the same for a radiating quark).

Colours were assigned to the partons taking into account the restrictions on the colour

flow discussed above. Note that this colour treatment is the planar approximation, which
1

Ng2

it is always possible to draw any Feynman diagram such that no colour lines need cross as

is correct only to O( ) where No = 3 is the number of colours. In this approximation,

in the figures above.
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q

Figure 28: Colour Flow

E. Born variables and parton flavours for Drell-Yan production

The Born variables Q2 and Y for each event were distributed according to the Born cross-
section in (f.9). Hence the momentum fractions z, and 7 given in (.9) are generated. The
flavour of the quarks involved in each event is also determined at the Born level according
to the product, egi fo(4, Q%) f7(z5, Q%). Colours are assigned in the planar approximation

which is correct to O(NICQ) where N¢ = 3.

F. Monte Carlo algorithm for Drell-Yan production

The eight integrals listed were evaluated by the ‘Hit Or Miss’ method and used to generate
a set of unweighted events using the importance sampling method described in section [A.

- oy | #Pa@1 1) Dawa, p®) +q oL f o0 as, (3
3 R e e e UL R =l (e

— 6 —dz+2(1+2%) <M>++ <1+§w2> 5(1 —x))} —qu+MCq4 :

(2)
IJq(i

J
q
@ 2[Dy(x1, p*) Dg(wa, 1*) +q = g 1 _ as 3
[qu = Z/Jdmdy { Dy(@y) Da(zq) 2 (1l —z)+ 27TC’F =),
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2
xla )Dg(IEQ,M )+q<_)g] ag 1 3 9 2
E dzd S =12 ppy 2
Ty = / & y[ Dy(2q)Dy(wq) on P51 TPt Y

+(@® + (1+2%)In(1 - x)} — My + Mcqg} :
qu Z/ dmdy - Mng]7

D 1D 2 1
1e) :Z/dmdy [x[ q(@1, 417) Dy (@2, M)+q<—>g]%TF§{§_5x+gx2

P Dy(x4)Dg(4) 2 2 2
+(@?2+ (14 2H))In(l — = } }
Iy = Z / dadyM,, . (F.1)

As in the eTe™ case, the [53) integrals are negative because M < M. The integrals are
all finite but there are divergences in the integrands which need to be regularized to make
the sampling process efficient. This is the subject of section [G. So far we have discussed
event generation in the DIS scheme. In the MS factorization scheme, the full cross-section
ratio is

"= % [ e, [P I 0y G5 (27 e

(o3 -2)

+ 41+ o (m 1_; ) +
x[Dg(x1, 1 HD (.%'2,/1,2) +q < 1 7
Dy(wq) Dyla) TTF{z =g
2
+ (224 (1 —i—x%)ln%}] : (F.2)

Hence the corresponding integrals for MS scheme event generation are

2 2 = 2
(2) xla )Dq($2aﬂ )+q<—>q]l _ a_s — 1+$
15 = Z/dm [ DXERTNES 5 10(0=2)+5-Cr (27—

+ 4(1 +2?) (%L + (—8 + %ﬁ) 6(1 - w)) } — Myq + Mcqq] )

J
q
2 _ @[Dg(x1, 1) Dg(@z, p®) + g o @1 f o as [ 142
thy = 32 e [ 3 (Mg Or (2 v
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2 _
Iqu o

+ (®+ (1 +x2))1nﬂ} — Mg + Mcqg] 7

3
I§q17 = Z/dedy[ng — Mcqg]7
q

2 2

@ _ / [w[Dq(CUhM )Dg(x2, *) +q < glag,, 1 {1 7
1 = dxdy —Tr=—<=-+3x—=x

g ; J Dy(x4)Dq(q) 2r 2 |2 2

1— 2
P
Iy =3 /D dwdyM,, . (F.3)
q

The divergences and mappings used are discussed in section 3.

G. Divergences and mappings for Drell-Yan production

G.1 Divergences in My; in dead region D
In region D, the hard matrix element:;

Dy(21)Dg(x2) as -, y*(1—2)> + (1 + )
Dy(zq)Dg(zq) 27 7 (1 —2)(1 - 4?)

diverges as (z,y) — (0,1),(0,—1) and (1,0). The mappings used to regularize these diver-

Mog(,y) = (G.1)

gences are presented.

G.1.1 Region D : (0,1),(0,—1)

A simple pole is approached in My as (z,y) — (0,1), (0, —1). In the region z < %, y > %, a
new set of random points are generated for events which fall between the lines z = g(l -v)
and x = 0. The mapping used and weight factor, w for these points is:

/ 1 2
= — =T
Yy 5 1,
/ ) /
= — 1 —_
w = 2r (G.2)

where 71, and 79 are random numbers in the range [0 : 1]. For the region z < i, y < —%,
interchange y <> —y. The mapped regions are shown with solid boundaries in figure 9.

G.1.2 Region D : (1,0)

As x — 1, there is a pole in Myq. This divergence is regularized by applying the following
mapping and weight factor to points which fall between the lines y = %(1 —z)and y =0
within the region = > %,O <y< i.

/ 2
z =1—-r,
571
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Figure 29: Mapped regions
/ 5 /
Yy = g’r?(l - ) )
w = 2r; . (G.3)
In the region = > %, 0>y> —%, a similar mapping is used;
' 2
r =1— -7,
571
/! 5 /
=——-rl-2),
) 3 2( )
w = 2r . (G.4)

The mapped regions are shown with solid boundaries in figure 9.

G.2 Divergences in My, in dead region D

In region D, the hard matrix element:

Dy(21)Dy(22) as o, (3 + y*) (1 —x)? — 2y(1 — 2?) + 2(1 + 2?)

Mag0:9) = 3 o Dlarg) 2 -y

(G.5)
diverges as (z,y) — (0,1). for points within the region, = < %, y > %, a new set of random
points are generated for events which fall between the lines = = g(l —y) and x = 0. The
mapping used to regularize this divergence is:

/ 2
prg 1 —_ =
Y 57°1,
’ 5 /
r = g?”g(l —x),
w = 2r (G.6)

The mapped region is shown with solid boundaries in figure B(.
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Figure 30: Mapped regions

G.3 Divergences in (M — Mc)q4q in jet region J

In regions J; and J; depicted in figure B1], the relevant integral to be evaluated is M — M¢
which in region J, is given by

Dya)Dyfaz) as (@ =1((@ =1y +20) + (B +5)w+1)

(M = Mo)gg = Dy(zq)Dg(xq) 27 4z(1 +y)

(G.7)

This diverges as x — 0. There are no singularities at the points x = 1,y = £1 because
the divergences at these points exactly cancel between M and M. Points in the region
T < %,y > % and between the lines y = 0 and y = 1 — 2z are mapped and re-weighted
according to ([G.§).

/ 1
T = -r
R 1,
y/ =1- 2x/7“2 ,
w = 2ry (G.8)

Interchange y < —y for the region Jj.

G.4 Divergences in (M — Mc)qg in jet region J

(M — Mcg)qq is given by

Dy(z1)Dy(z2) %TF (r —1)[42? — 32+ 1+ 3oy(z — 1) + %(x — 1)?]

(M = Mc)gg = Dy (24)Dg(xq) 27 4z

(G.9)
which diverges as * — 0 in region J. This is regularized by using the same mapping

presented in ([G.§).
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